fiche méthodes

Vecteurs de l'espace

Comment montrer que les vecteurs \vec{u} et \vec{v} sont colinéaires :

Il faut établir une relation du type $\vec{u} = \alpha \vec{v}$ avec α réel

Conséquences: \odot \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires \Leftrightarrow A, B et C alignés \odot \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires \Leftrightarrow (AB) et (CD) parallèles

Comment montrer que trois points A, B et C définissent un plan unique :

Il faut montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires

Comment montrer que les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires :

Il faut trouver deux réels α et β tel que par exemple $\vec{u} = \alpha \vec{v} + \beta \vec{w}$

Quelles formules faut-il utiliser en géométrie analytique :

Avec $A(x_A; y_A; z_A)$, $B(x_B; y_B; z_B)$, α et β deux réels, $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, $\overrightarrow{w} \begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix}$

On a:
$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix} \qquad \alpha \overrightarrow{u} \begin{pmatrix} \alpha x \\ \alpha y \\ \alpha z \end{pmatrix} \qquad \overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$$

Si
$$I = m [AB]$$
 alors $I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$

Égalité:
$$\vec{u} = \vec{v} \iff \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \iff \begin{cases} x = x' \\ y = y' \\ z = z' \end{cases}$$

Comment montrer que les vecteurs \vec{u} et \vec{v} sont colinéaires :

Il faut trouver un réel α tel que $\vec{u} = \alpha \vec{v}$

C'est-à-dire tel que :
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$
 qui équivaut à $\begin{cases} x = \alpha x' \\ y = \alpha y' \\ z = \alpha z' \end{cases}$

exemple: soit
$$\vec{u} \begin{pmatrix} 2 \\ 6 \\ -4 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$

 \vec{u} et \vec{v} sont colinéaires $\Leftrightarrow \exists \alpha \in \mathbb{R} / \vec{u} = \alpha \vec{v}$

$$\Leftrightarrow \exists \alpha \in \mathbb{R} / u = \alpha v$$

$$\Leftrightarrow \exists \alpha \in \mathbb{R} / \begin{cases} 2 = \alpha \\ 2 = \alpha \end{cases} : impossible$$

$$-2 = \alpha$$

donc \vec{u} et \vec{v} ne sont pas colinéaires.

Comment montrer que les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires :

Il faut trouver deux réels α et β tel que par exemple $\vec{u} = \alpha \vec{v} + \beta \vec{w}$

C'est-à-dire tel que :
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \beta \begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix}$$

 $\int x = \alpha x' + \beta x''$ Le problème revient alors à résoudre le système $\{y = \alpha y' + \beta y'' \text{ d'inconnues } \alpha \text{ et } \beta \}$

rappel : comment résoudre un système de trois équations à deux inconnues α et β :

- \odot déterminer si possible α et β à partir de deux équations
- © puis remplacer les valeurs trouvées dans la troisième équation pour vérification

exemple: soit
$$\vec{u} \begin{pmatrix} 2 \\ 8 \\ -1 \end{pmatrix}$$
 $\vec{v} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

 \vec{u} , \vec{v} et \vec{w} sont coplanaires $\Leftrightarrow \exists (\alpha; \beta) \in \mathbb{R}^2 / \vec{u} = \alpha \vec{v} + \beta \vec{w}$

$$\Leftrightarrow \exists (\alpha, \beta) \in \mathbb{R}^2 / \begin{cases} 2 = \alpha + \beta \\ 8 = -\alpha + \beta \\ -1 = 2\alpha + \beta \end{cases}$$
$$\Leftrightarrow \exists (\alpha, \beta) \in \mathbb{R}^2 / \begin{cases} \alpha = -3 \\ \beta = 5 \\ -1 = -1 : vrai \end{cases}$$

$$\Leftrightarrow \exists (\alpha; \beta) \in \mathbb{R}^2 / \begin{cases} \alpha = -3 \\ \beta = 5 \\ -1 = -1 : vrai \end{cases}$$

donc $\vec{u} = -3\vec{v} + 5\vec{w} \implies \vec{u}$, \vec{v} et \vec{w} sont coplanaires